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Constrained Solution of a

System of Matrix Equations

Abstract

This report presents a technique for constrained solution of a system of matrix

equations which arises in the problem of pole placement with static dissipative output

feedback. Previously developed necessary conditions for the existence of a solution are

shown to be sufficient as well. A minimax approach is presented to determine a feasible

coefficient vector that satisfies these conditions. A procedure to construct the desired

solution matrix, based on minimax programming techniques, is detailed. Numerical

examples are presented to illustrate the application of this approach.



Constrained Solution of a

System of Matrix Equations

Introduction

A technique for constrained solutions of the system of matrix equations

GW_p = V_p

(1)
GI_V2p = V2p

where Wi, _, i = 1,2, are givenm x n data matrices, G is anm xm unknown

matrix, and p is an arbitrary unknown n × 1 coefficient vector, is described in this

report. The solution matrix, G, is constrained such that its symmetric part, that is,

sym{G} _= ½(G + GT), is positive semidefinite. A further constraint on the solution is

also considered, wherein the solution matrix G is symmelric and positive semidefinite.

Such systems of matrix equations arise in the eigensystem assignment problem with

dissipativity constraints 1.2. The eigenpair assignment problem is reduced to a system of

equations in Eq. (1), where G is the unknown feedback gain matrix that must satisfy the

dissipativity constraints and p is an arbitrary coefficient vector. Specifically, Eq. (14)

of Ref. 2 corresponds to Eq. (1) above, which is investigated in this report. Necessary

conditions on the arbitrary coefficient vector, p, for the existence of a solution matrix,

G, are available in Ref. 2.

This report shows that the necessary conditions on the arbitrary coefficient vector, p,

for the existence of a solution matrix 2 are sufficient as well. This development reduces

the problem of constrained solution of the system of matrices to determining a feasible

coefficient vector. A minimax approach to determine a coefficient vector satisfying these

conditions is presented. The technique to obtain a matrix, G, that satisfies the system of

equations in Eq. (1) along with the constraints of positive semidefiniteness is detailed.

A numerical example has been presented to illustrate this technique.



Solution Technique

First, a proposition presents necessary and sufficient conditions on the arbitrary

coefficient vector, p, for the existence of a constrained solution to the system of matrices

in Eq. (i).

Proposition. A matrix G whose symmetric part is positive semidefinite satisfies Eq. (1)

if and only if there exists a vector p which satisfies

prv rwlp>0

pTv2Tw2 p > 0 (2)

I (pTV1TW2p+ pTvTI'Vlp) 2 > 0

Furthermore, a symmetric and positive semidefinite matrix G solves Eq. (1) if

and only if there exists a vector p which satisfies the inequalities in Eq. (2) and

pT _ IT Wo p pT , T ,. = _'2 lA_p.

Proof." The necessity of the conditions in Eq. (2) for existence of a solution has been

proved in Ref. 2. The following presents another approach to this proof. Denote

Yl = V_p, y__= l/2p, xl = Ifqp and x2 = _)p. Then, the conditions in Eq. (2) become

_/TX1 ?_ 0. lJ.T.r2 _ 0 arid (yTXl)(Y2T3:2) -- l(ylTx 2 -'_ yfXl) 2 ?_ 0. Eq. (1) can be

written as G[xt x2 ] = [yl y2 ], and premultiplying this by [Xl x2 iT leads to

[Xl X2 ]TG[zl X2 ] = [Xl X2 ]T[yl Y2 ]

Adding Eq. (3) and its transpose yields

yTx 1[Xl x2]T[sym(G)][xl z2]= 0.5(yTz2+yTxl)

Now if sym(G) >__0, then Eq. (4) implies that

yTx 1

0"5(yTX2 + yTXl) ]YTX2

o. (yT:2+ x,)
>0

T
Y2 x2

(3)

(4)

(5)



Since determinants of the principal minors of a positive semidefinite matrix must be

nonnegative, the conditions in F.q. (2) follow. Thus, if there exists a matrix G, which

satisfies Eq. (1), and its symmetric part is positive sernidefirdte, then the vector p must

satisfy conditions in Eq. (2).

For sufficiency, it has to be shown that if a vector p satisfies the conditions in Eq.

(2), then there exists a matrix G, whose symmetric part is positive semidefinite, which

satisfies Eq. (1). A constructive proof of this statement follows. Denote X = [zz z2 ]

and Y = [/11 Y2]. Then, Eq. (Z) may be rewritten as GX = Y. Let Q be an orthogonal

matrix, such that

where Y1 is a nonsingular 2 × 2 matrix. The matrix Q can be obtained by QR factorization 3

of Y. Define )(1, _'_. as follows

(7)

where -_1 is a 2 x 2 matrix, and -g2 is a (m - 2) × 2 matrix. Note that -_'1 is nonsingular

if xa and x2 are linearly independent (otherwise, F_,q. (1) is solved trivially). Defining

611 = _'a._l I , it can be seen that

Therefore, it follows that the matrix G defined as

G=Q o o

(8)

(9)

satisfies GX = Y.

Next, it is shown that sym(G) > 0. From Eq. (5) it follows that conditions in Eq. (2)

imply sym(yTx) >_ O. Next, since yTx = (QTY) T (QTX) = _'T.x1, sym(yrx) >_

_TU,
0 leads to sym(YiTX1) > 0. Noting that sym(Y 1 -¥1)= _'T[sym(G11)]-Y, >0,
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sym(Gll) >_ 0 follows from the nonsingularityof -_'1. Finally, by construction,

sym(G) _>0 ff sym(Gll) _>0.

Furthermore,ff a is symmetric, that is, a = sym(G), then yTx2 = xTGTz2 =

xTGT:r.1 = yrzl, sO that the additional condition in the proposition is satisfied. On the

other hand, the additional constraint ensures that yTx = yT.x1 is symmetric. Since

rl = Gl1_1(1, _1T-_:1 -_ -_T_'I, arid XI is nonsingluar, it follows that 611 is symmetric.

Finally, again by construction, G is symmetric when 611 is symmetric. •

The next step in solution of Eq. (1) is to determine a coefficient vector, p, that satisfies

conditions of the proposition, Eq. (2). A number of approaches have been attempted for

this problem 2. A very efficient and reliable numerical approach to determining a feasible

coefficient vector, based on minimax optimization, is presented below.

The conditions of Eq. (2) may be used directly for a minimax optimization. However,

note that while the first two conditions form a quadratic in the coefficient vector, p, the

last condition is much more complicated, potentially leading to numerical inefficiencies

in the optimization algorithms. Sufficient conditions on the coefficient vector p, in terms

of four quadratic inequalities, are as follows:

fl(p) _- pT{_/1TwI-_I(vTvt/2-I-I/2T_V1)}p ___ 0

f2(P) =PT vTwI _ 2 . _
(lO)

f3(p) = pT{v2Tvv'2-_-I(v1T_/_2-t - lt/_T[_l)}p _ 0

{ I(k'TH'h+V:B1)} p > 0f4(P) = pT vTvi/) _ _. . _

The conditions together imply

pTvTI, Vlp > 0

pT k2T vI,'_p

It Can be readily verified that

(11), then the inequalities of Eq. (2) are also satisfied.

that the coefficient vector, p satisfies

(11)

if the coefficient vector p satisfies the conditions in Eq.



Since the four expressions on the left hand side of the inequalities in Eq. (10)

are quadratic in the coefficient vector, p, a feasible coefficient vector can be reliably

determined using numerical programming techniques. The approach is to maximize the

minimum of the four quadratic functions, fi(p), i = 1, ..., 4, with respect to p, until all of

them are positive. This problem becomes a standard minimax problem by reversing the

sign of the quadratic functions, that is, minimizing the maximum of -fi(P), i = 1, ..., 4

with respect to p. By introducing a scalar variable, A, the minimax problem is transformed

to a constrained minimization problem, as follows:

min A such that fi(p) + A _> 0, i = 1, ..., 4 (12)
p,A

Standard nonlinear programming techniques may be used for this constrained

minimization'*. Analytic gradients of the quadratic functions, fi(p), i = 1,...,4,

are readily available, since the gradient of any quadratic function is given as

o (pTQp) = (Q + QT)p. The optimization in F.,q. (12) is very well-behaved because_7

the functions, fi(p), i = 1, ...,4, are quadratic in p, and analytic gradients are linear in

p. A nonpositive value of A in Eq. (12) provides a feasible coefficient vector, p, that

satisfies the conditions in Eq. (2). The convergence of the nonlinear optimization in

Eq. (12) is not an issue, since the search can be terminated once a desirable (negative)

target value of A has been attained.

Furthermore, if a symmetric and positive semidefinite solution of Eq. (1) is desired,

it follows from the Proposition that an additional equality constraint,

g(p):pT(_/1Tw2--v2TV_rl)p

must be satisfied apart from the conditions in Eq. (2).

= 0 (13)

It is noted thattkisequality

constraint again involves a quadratic in p, so that its analytic gradient is linear and

readily available. Therefore, to obtain a feasible coefficient vector, p, for a symmetric

and positive semidefinite solution matrix, G, the equality constraint in Eq. (13) must be

included with the optimization of Eq. (12). Again, a feasible vector p is obtained as

soon as the scalar parameter, ._, attains a nonpositive value.

6



Experiencein applicationof the minimax approachpresentedabovehas shown

that this techniqueis very effectivein obtaininga feasiblecoefficientvector,p, which

satisfies the conditions in Eq. (2).

Once a feasible coefficient vector, p, satisfying the conditions of the Proposition has

been obtained, a constrained solution of Eq. (1) may be constructed as follows:

1. Form the m x 2 matrices, I/ = [Vlp rC_p], and X = [I¥1p l,_p]

2. Perform a QR decomposition of Y to obtain _] as in Eq. (6), and obtain -_1 from

Eq. (7).

3. Using 011 -'- _'1_'11 , form the solution matrix G as in Eq. (9).

From the proof of the Proposition, it follows that starting with a feasible coefficient

vector, the matrix, G, constructed from the steps above is a desired solution of the

system of matrix equations in Eq. (1).

Numerical Example

A numerical example is presented in this section to demonstrate the solution technique

presented in this report. The data matrices (W1, W2, V1, V2 ) used in this example have

been obtained from the numerical example in Ref. 2 for damping enhancement of a

model of a flexible space structure at NASA Langley. For this example, m = 4 and

n = 8. The 4 x 8 data matrices W1, I4,2, 1/], 1/_ are given below.

0.002 -0.202 0.326 -0.468 -0.063 0.001 -0.002 0.005

0.000 0.721 -0.406 -0.156 0.005 0.028 0.042 0.015

-0.002 -0.338 0.279 -0.063 0.055 0.035 0.051 0.023

0.001 -0.205 -0.167 0.809 -0.031 0.026 0.044 0.010

V2

0.063 -0.001 0.002 -0.005 0.002 -0.202 0.326 -0.468

-0.005 -0.028 -0.042 -0.015 0.000 0.721 -0.406 -0.156

-0.055 -0.035 -0.051 -0.023 -0.002 -0.338 0.279 -0.063

0.031 -0.026 -0.044 -0.010 0.001 -0.205 -0.167 0.809



WI=

0.267

0.000

-0.238

0.137

0.790

0.131

-0.465

0.446

0.092 0.137 0.041 -0.790 0.175

0.073 0.116 0.028 -0.131 0.256

0.051 0.091 0.016 0.465 0.299

0.068 0.105 0.038 -0.446 0.156

-0.175 -0.259 -0.095 0.267

-0.256 -0.370 -0.143 0.000

-0.299 -0.454 -0.186 -0.238

-0.156 -0.250 -0.170 0.137

0.259

0.370

0.454

0.250

0.092 0.137

0.073 0.116

0.051 0.091

0.068 0.105

0.095

0.143

0.186

0.170

0.041

0.028

0.016

0.038

The problem is to determine a 4 x 4 matrix G whose symmetric part is positive semidefinite

and solves Eq. (1) for some 8 x 1 coefficient vector p.

The first step is to determine a feasible coefficient vector, p, which satisfies the

conditions of the Proposition. This is done by solving the nonlinear optimization problem

in F_,q. (12). Note that upper and lower bounds have to be imposed on the elements of

the coefficient vector p for solution of this optimization problem. The upper bounds were

set to 1.0, and the lower bounds were set to -1.0 for the current solution. Optimization

software of Refs. 5 and 6 is used to determine a feasible value of p as

p = [1.000 1.000 1.000 1.000 -0.966 1.000 -0.404 0.948]T

Using this feasible value of the coefficient vector, p, the first step is to form the

matrices Y and X, which are

-0.275 -0.721

0.180 0.647

-0.140 -0.674

0.485 0.579

1.462

0.587
X=

-0.239

0.995

For the second step, a QR decomposition 5 of Y results in

Q

"-0.456 0.308 -0.237 0.801

0.299 -0.473 0.630 0.538

-0.233 0.631 0.722 -0.162

0.805 0.532 -0.159 0.207

0.078

-0.585

-1.146

-0.202



[060 1.146] r036601061and ]r_ -- 0.000 -0.645 " Using Eq. (7), it follows that -_1 = L0.551 -0.530 J "

Finally, Gll _1-_11 [ 7.019 --3.565 ]
= = , and from Eq. (9), a constrained

L-2.624 1.741
solution of F_z/. (1) is

G

2.494 -2.220 2.298 -2.078

-2.104 1.890 -1.969 1.683

2.095 -1.895 1.983 -1.623

-2.539 2.191 -2.218 2.392

Eigenvalues of the symmetric part of G are {8.447, 0.3133, 0.000. 0.000}, which shows

that it is positive semidefinite. It can be readily checked that this matrix satisfies Eq. (1).

Similarly, for a symmetric and positive semidefirtite solution, the additional equality

constraint of Eq. (13) is included in the optimization problem, to obtain a feasible

coefficient vector as

p = [0.074 -0.176 -0.244 -0.085 0.071 -0.081 -0.136 -0.068] T

Fol/owing the steps above, a symmetric and positive semidefinite solution of the system

of equations is obtained as

1
G_

10

0.352 0.312 -0.245 0.165

0.312 0.947 0.467 0.092

-0.245 0.467 0.867 -0.169

0.165 0.092 -0.169 0.082

Eigenvalues of this matrix are {0.138, 0.087, 0.000, 0.000 }, which shows that this matrix

is symmetric and positive definite. Again, it can be readily verified that this matrix does

satisfy Eq. (1).

This solution technique has been used for various other data sets corresponding to

different problems of damping enhancement of flexible space smactures. It has been

found to be very efficient and reliable on all problems attempted thus far.

9



Summary

This report has presented an approach to the constrained solution of a system of

matrix equations which arises frequently in pole placement with output feedback under

dissipativity constraints. It has been shown that previously available necessary conditions

for the existence of constrained solutions are sufficient as well. A minimax approach

to determine a feasible coefficient vector satisfying the conditions for existence of a

solution was presented, and the steps to construct a constrained solution to the system of

matrix equations have been described. This approach has been successfully applied to

the design of static dissipative controllers for eigensystem assignment in several flexible

structure applications, and has proven to be very reliable and efficient.
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